Serveur d'exploration sur les récepteurs immunitaires végétaux

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Tomato Atypical Receptor Kinase1 Is Involved in the Regulation of Preinvasion Defense.

Identifieur interne : 000016 ( Main/Exploration ); précédent : 000015; suivant : 000017

Tomato Atypical Receptor Kinase1 Is Involved in the Regulation of Preinvasion Defense.

Auteurs : Andrew R. Guzman [États-Unis] ; Jung-Gun Kim [États-Unis] ; Kyle W. Taylor [États-Unis] ; Daniel Lanver [États-Unis] ; Mary Beth Mudgett [États-Unis]

Source :

RBID : pubmed:32385090

Abstract

Tomato Atypical Receptor Kinase 1 (TARK1) is a pseudokinase required for postinvasion immunity. TARK1 was originally identified as a target of the Xanthomonas euvesicatoria effector protein Xanthomonas outer protein N (XopN), a suppressor of early defense signaling. How TARK1 participates in immune signal transduction is not well understood. To gain insight into TARK1's role in tomato (Solanum lycopersicum) immunity, we used a proteomics approach to isolate and identify TARK1-associated immune complexes formed during infection. We found that TARK1 interacts with proteins predicted to be associated with stomatal movement. TARK1 CRISPR mutants and overexpression (OE) lines did not display differences in light-induced stomatal opening or abscisic acid-induced stomatal closure; however, they did show altered stomatal movement responses to bacteria and biotic elicitors. Notably, we found that TARK1 CRISPR plants were resistant to Pseudomonas syringae pathovar tomato strain DC3000-induced stomatal reopening, and TARK1 OE plants were insensitive to Psyringae pathovar tomato strain DC3118 (coronatine deficit)-induced stomatal closure. We also found that TARK1 OE in leaves resulted in increased susceptibility to bacterial invasion. Collectively, our results indicate that TARK1 functions in stomatal movement only in response to biotic elicitors and support a model in which TARK1 regulates stomatal opening postelicitation.

DOI: 10.1104/pp.19.01400
PubMed: 32385090
PubMed Central: PMC7333691


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Tomato Atypical Receptor Kinase1 Is Involved in the Regulation of Preinvasion Defense.</title>
<author>
<name sortKey="Guzman, Andrew R" sort="Guzman, Andrew R" uniqKey="Guzman A" first="Andrew R" last="Guzman">Andrew R. Guzman</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Stanford University, Stanford, California 94305-5020.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Biology, Stanford University, Stanford</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Kim, Jung Gun" sort="Kim, Jung Gun" uniqKey="Kim J" first="Jung-Gun" last="Kim">Jung-Gun Kim</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Stanford University, Stanford, California 94305-5020.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Biology, Stanford University, Stanford</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Taylor, Kyle W" sort="Taylor, Kyle W" uniqKey="Taylor K" first="Kyle W" last="Taylor">Kyle W. Taylor</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Stanford University, Stanford, California 94305-5020.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Biology, Stanford University, Stanford</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Lanver, Daniel" sort="Lanver, Daniel" uniqKey="Lanver D" first="Daniel" last="Lanver">Daniel Lanver</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Stanford University, Stanford, California 94305-5020.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Biology, Stanford University, Stanford</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Mudgett, Mary Beth" sort="Mudgett, Mary Beth" uniqKey="Mudgett M" first="Mary Beth" last="Mudgett">Mary Beth Mudgett</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, Stanford University, Stanford, California 94305-5020 mudgett@stanford.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Biology, Stanford University, Stanford</wicri:regionArea>
<wicri:noRegion>Stanford</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32385090</idno>
<idno type="pmid">32385090</idno>
<idno type="doi">10.1104/pp.19.01400</idno>
<idno type="pmc">PMC7333691</idno>
<idno type="wicri:Area/Main/Corpus">000139</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000139</idno>
<idno type="wicri:Area/Main/Curation">000139</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000139</idno>
<idno type="wicri:Area/Main/Exploration">000139</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Tomato Atypical Receptor Kinase1 Is Involved in the Regulation of Preinvasion Defense.</title>
<author>
<name sortKey="Guzman, Andrew R" sort="Guzman, Andrew R" uniqKey="Guzman A" first="Andrew R" last="Guzman">Andrew R. Guzman</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Stanford University, Stanford, California 94305-5020.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Biology, Stanford University, Stanford</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Kim, Jung Gun" sort="Kim, Jung Gun" uniqKey="Kim J" first="Jung-Gun" last="Kim">Jung-Gun Kim</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Stanford University, Stanford, California 94305-5020.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Biology, Stanford University, Stanford</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Taylor, Kyle W" sort="Taylor, Kyle W" uniqKey="Taylor K" first="Kyle W" last="Taylor">Kyle W. Taylor</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Stanford University, Stanford, California 94305-5020.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Biology, Stanford University, Stanford</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Lanver, Daniel" sort="Lanver, Daniel" uniqKey="Lanver D" first="Daniel" last="Lanver">Daniel Lanver</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Stanford University, Stanford, California 94305-5020.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Biology, Stanford University, Stanford</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Mudgett, Mary Beth" sort="Mudgett, Mary Beth" uniqKey="Mudgett M" first="Mary Beth" last="Mudgett">Mary Beth Mudgett</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, Stanford University, Stanford, California 94305-5020 mudgett@stanford.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Biology, Stanford University, Stanford</wicri:regionArea>
<wicri:noRegion>Stanford</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="eISSN">1532-2548</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Tomato Atypical Receptor Kinase 1 (TARK1) is a pseudokinase required for postinvasion immunity. TARK1 was originally identified as a target of the
<i>Xanthomonas euvesicatoria</i>
effector protein
<i>Xanthomonas</i>
outer protein N (XopN), a suppressor of early defense signaling. How TARK1 participates in immune signal transduction is not well understood. To gain insight into TARK1's role in tomato (
<i>Solanum lycopersicum</i>
) immunity, we used a proteomics approach to isolate and identify TARK1-associated immune complexes formed during infection. We found that TARK1 interacts with proteins predicted to be associated with stomatal movement. TARK1 CRISPR mutants and overexpression (OE) lines did not display differences in light-induced stomatal opening or abscisic acid-induced stomatal closure; however, they did show altered stomatal movement responses to bacteria and biotic elicitors. Notably, we found that TARK1 CRISPR plants were resistant to
<i>Pseudomonas syringae</i>
pathovar tomato strain DC3000-induced stomatal reopening, and TARK1 OE plants were insensitive to
<i>P</i>
<i>syringae</i>
pathovar tomato strain DC3118 (coronatine deficit)-induced stomatal closure. We also found that TARK1 OE in leaves resulted in increased susceptibility to bacterial invasion. Collectively, our results indicate that TARK1 functions in stomatal movement only in response to biotic elicitors and support a model in which TARK1 regulates stomatal opening postelicitation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">32385090</PMID>
<DateRevised>
<Year>2020</Year>
<Month>08</Month>
<Day>03</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1532-2548</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>183</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2020</Year>
<Month>07</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Tomato Atypical Receptor Kinase1 Is Involved in the Regulation of Preinvasion Defense.</ArticleTitle>
<Pagination>
<MedlinePgn>1306-1318</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1104/pp.19.01400</ELocationID>
<Abstract>
<AbstractText>Tomato Atypical Receptor Kinase 1 (TARK1) is a pseudokinase required for postinvasion immunity. TARK1 was originally identified as a target of the
<i>Xanthomonas euvesicatoria</i>
effector protein
<i>Xanthomonas</i>
outer protein N (XopN), a suppressor of early defense signaling. How TARK1 participates in immune signal transduction is not well understood. To gain insight into TARK1's role in tomato (
<i>Solanum lycopersicum</i>
) immunity, we used a proteomics approach to isolate and identify TARK1-associated immune complexes formed during infection. We found that TARK1 interacts with proteins predicted to be associated with stomatal movement. TARK1 CRISPR mutants and overexpression (OE) lines did not display differences in light-induced stomatal opening or abscisic acid-induced stomatal closure; however, they did show altered stomatal movement responses to bacteria and biotic elicitors. Notably, we found that TARK1 CRISPR plants were resistant to
<i>Pseudomonas syringae</i>
pathovar tomato strain DC3000-induced stomatal reopening, and TARK1 OE plants were insensitive to
<i>P</i>
<i>syringae</i>
pathovar tomato strain DC3118 (coronatine deficit)-induced stomatal closure. We also found that TARK1 OE in leaves resulted in increased susceptibility to bacterial invasion. Collectively, our results indicate that TARK1 functions in stomatal movement only in response to biotic elicitors and support a model in which TARK1 regulates stomatal opening postelicitation.</AbstractText>
<CopyrightInformation>© 2020 American Society of Plant Biologists. All Rights Reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Guzman</LastName>
<ForeName>Andrew R</ForeName>
<Initials>AR</Initials>
<Identifier Source="ORCID">0000-0002-1600-268X</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biology, Stanford University, Stanford, California 94305-5020.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kim</LastName>
<ForeName>Jung-Gun</ForeName>
<Initials>JG</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Stanford University, Stanford, California 94305-5020.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Taylor</LastName>
<ForeName>Kyle W</ForeName>
<Initials>KW</Initials>
<Identifier Source="ORCID">0000-0001-6794-5664</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biology, Stanford University, Stanford, California 94305-5020.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lanver</LastName>
<ForeName>Daniel</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Stanford University, Stanford, California 94305-5020.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mudgett</LastName>
<ForeName>Mary Beth</ForeName>
<Initials>MB</Initials>
<Identifier Source="ORCID">0000-0003-0570-2776</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biology, Stanford University, Stanford, California 94305-5020 mudgett@stanford.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P30 CA124435</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>S10 RR027425</GrantID>
<Acronym>RR</Acronym>
<Agency>NCRR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 GM007276</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>05</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="CommentIn">
<RefSource>Plant Physiol. 2020 Jul;183(3):820-821</RefSource>
<PMID Version="1">32611824</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>11</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>04</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>5</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>5</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>5</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32385090</ArticleId>
<ArticleId IdType="pii">pp.19.01400</ArticleId>
<ArticleId IdType="doi">10.1104/pp.19.01400</ArticleId>
<ArticleId IdType="pmc">PMC7333691</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Cell. 2014 Jul;26(7):3167-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25005917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Feb;65(3):469-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21265899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Sep;154(1):391-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20592040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Nov 21;97(24):13324-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11078519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Sep 8;126(5):969-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16959575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Sep;51(5):931-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17651370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2007;58:219-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17209798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2013;11(3):e1001513</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23526882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Jul;153(3):1188-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20457804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2017 Mar 6;10(3):530-532</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28089950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2007 Mar;4(3):207-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17327847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 May 13;105(19):7100-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18458331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2011 Mar;34(3):434-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21062318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Aug;16(8):2117-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15258265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Nov 23;101(47):16624-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15545602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Aug;159(4):1845-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22730426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Nov 18;468(7322):400-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20927106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Jun;24(6):2546-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22730405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2018 Nov;30(11):2813-2837</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30361234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Jun;54(6):1076-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18346194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Dec;56(6):984-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18702674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2014 Sep 19;4:6420</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25236476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2014 Mar 12;15(3):329-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24629339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2017 Feb 13;10(2):223-243</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27923613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Vis Exp. 2010 Oct 02;(44):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20972403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9368-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10430949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2012 Jun 14;11(6):587-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22704619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2012 Feb;8(2):e1002513</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22346749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2010 Oct;13(5):587-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20920881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2014 Apr 10;54(1):43-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24630626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2018 Dec;231:318-328</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30368230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2000 May;25(1):25-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10802651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Mar;143(3):1398-407</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17220365</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Apr;134(4):1536-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15064385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Apr;21(4):1305-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19366901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2007 Jul 11;26(13):3216-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17557075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2016 Oct;26(7):645-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27103309</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2009 Jun 30;7(6):e1000139</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19564897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2016;1363:133-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26577786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2018 Mar;176(3):2426-2440</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29301953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2012;8(6):e1002768</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22719257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Struct Biol. 2014 Apr;186(1):112-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24556575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2015 Sep 9;18(3):285-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26355215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2010 Jul;51(7):1186-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20516032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2015;66:369-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25665132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2020 Jan 9;180(1):176-187.e19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31923394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Nov;36(4):485-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14617079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2019 Mar;17(3):665-673</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30183125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2015 Apr;16(4):232-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25785716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2007;58(13):3503-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17951602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biosci Bioeng. 2007 Jul;104(1):34-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17697981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Sep 1;25(17):3389-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9254694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2014 Apr 29;9:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24780935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2014 Jan 20;24(2):134-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24388849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Nov;172(3):2021-2032</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27702841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1995 Dec 27;377(3):523-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8549790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 16;444(7117):323-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Nov 12;110(46):18722-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24170858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2009 Sep;7(7):682-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19627561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2019 Jan 8;47(D1):D330-D338</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30395331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2012 Dec 02;12:229</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23198823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2017 Jun;174(2):561-571</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28341769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2011 Oct;7(10):e1002291</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21998587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2007 May 17;1(3):175-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18005697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Aug;171(4):2731-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27261063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2010;61:561-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20192751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Jun 21;7:880</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27446113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2010 Sep;12 Suppl 1:64-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20712622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Feb;213(3):1378-1392</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28005270</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Guzman, Andrew R" sort="Guzman, Andrew R" uniqKey="Guzman A" first="Andrew R" last="Guzman">Andrew R. Guzman</name>
</region>
<name sortKey="Kim, Jung Gun" sort="Kim, Jung Gun" uniqKey="Kim J" first="Jung-Gun" last="Kim">Jung-Gun Kim</name>
<name sortKey="Lanver, Daniel" sort="Lanver, Daniel" uniqKey="Lanver D" first="Daniel" last="Lanver">Daniel Lanver</name>
<name sortKey="Mudgett, Mary Beth" sort="Mudgett, Mary Beth" uniqKey="Mudgett M" first="Mary Beth" last="Mudgett">Mary Beth Mudgett</name>
<name sortKey="Taylor, Kyle W" sort="Taylor, Kyle W" uniqKey="Taylor K" first="Kyle W" last="Taylor">Kyle W. Taylor</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantImRecepV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000016 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000016 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantImRecepV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32385090
   |texte=   Tomato Atypical Receptor Kinase1 Is Involved in the Regulation of Preinvasion Defense.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32385090" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantImRecepV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 12:33:18 2020. Site generation: Sat Nov 21 12:33:47 2020